首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:One year in the Earth's magnetosphere: A global MHD simulation and spacecraft measurements
  • 本地全文:下载
  • 作者:G. Facskó ; I. Honkonen ; T. Živković
  • 期刊名称:Space Weather
  • 印刷版ISSN:1542-7390
  • 出版年度:2016
  • 卷号:14
  • 期号:5
  • 页码:351-367
  • DOI:10.1002/2015SW001355
  • 语种:English
  • 出版社:American Geophysical Union
  • 摘要:The response of the Earth's magnetosphere to changing solar wind conditions is studied with a 3-D Magnetohydrodynamic (MHD) model. One full year (155 Cluster orbits) of the Earth's magnetosphere is simulated using Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS-4) magnetohydrodynamic code. Real solar wind measurements are given to the code as input to create the longest lasting global magnetohydrodynamics simulation to date. The applicability of the results of the simulation depends critically on the input parameters used in the model. Therefore, the validity and the variance of the OMNIWeb data are first investigated thoroughly using Cluster measurement close to the bow shock. The OMNIWeb and the Cluster data were found to correlate very well before the bow shock. The solar wind magnetic field and plasma parameters are not changed significantly from the L1 Lagrange point to the foreshock; therefore, the OMNIWeb data are appropriate input to the GUMICS-4. The Cluster SC3 footprints are determined by magnetic field mapping from the simulation results and the Tsyganenko (T96) model in order to compare two methods. The determined footprints are in rather good agreement with the T96. However, it was found that the footprints agree better in the Northern Hemisphere than the Southern one during quiet conditions. If the By is not zero, the agreement of the GUMICS-4 and T96 footprint is worse in longitude in the Southern Hemisphere. Overall, the study implies that a 3-D MHD model can increase our insight of the response of the magnetosphere to solar wind conditions.
国家哲学社会科学文献中心版权所有