摘要:We present a new model of the South Atlantic Anomaly (SAA) particle flux intensity for low Earth orbit, based a new data set, i.e., particle noise pulses in an ultraviolet photomultiplier. The data set is unique in that it provides daily monitoring of the strength of the particle radiation at a fixed altitude and local time and provides a consistent set of observations across the deep solar minimum. The observations show the following: (1) a development over the decline of solar cycle 23 into a deep solar minimum and the subsequent rise of cycle 24, (2) the slow motion drift of the SAA centroid with time at the rate—longitude drift =0.36 ± 0.06°W/yr, and latitude drift =0.16 ± 0.09°N/yr, (3) a higher particle flux at solar minimum than at solar maximum, and (4) a yearly cyclical variation. These particle rates are deduced from electric noise pulses generated in the photometers when an energetic charged particle hits the detector and causes an electron to be liberated from the detector material. The model described here can be used to monitor and even spatially predict the changes in particle fluxes seen by instruments in contemporaneous low Earth orbits through the SAA.