首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Using spectral shape and predictor fluence to evaluate temporal dependence of exposures from solar particle events
  • 本地全文:下载
  • 作者:Myung-Hee Y. Kim ; Steve R. Blattnig ; Martha C. Clowdsley
  • 期刊名称:Space Weather
  • 印刷版ISSN:1542-7390
  • 出版年度:2017
  • 卷号:15
  • 期号:2
  • 页码:374-391
  • DOI:10.1002/2016SW001552
  • 语种:English
  • 出版社:American Geophysical Union
  • 摘要:Real-time estimation of exposure levels has been considered in NASA's operational strategies and structural capability for the protection of astronauts from exposure to large solar particle events (SPEs). The temporal profile of organ dose rates is also important for the analysis of dose-rate-dependent biological responses and the optimization of radiation shielding and future mission planning. A realistic temporal estimation of exposure profiles relies on (1) the complete energy spectrum of SPE that defines the boundary condition for radiation transport simulation, (2) the radiation transport simulation with detailed shielding and body geometry models that determines particle transmission at each critical body organ, and (3) the assessment of organ dosimetric quantities and biological risks by applying the corresponding response models. This paper introduces a process of rapidly estimating temporal exposures to SPEs by implementing the distributions of the organ doses and the spectral-shape characterization of the major SPEs. Simultaneously, the unconditional probability exceeding the NASA 30 day limit of a blood-forming organ dose is estimated by taking into account the variability of detailed spectra of SPEs for a given predictor fluence. These temporal evaluations of SPEs can be applied to the development of real-time guidance and protection system on improving mitigation of adverse effects during space missions.
国家哲学社会科学文献中心版权所有