首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:Differential Magnetometer Measurements of Geomagnetically Induced Currents in a Complex High Voltage Network
  • 本地全文:下载
  • 作者:J. Hübert ; C. D. Beggan ; G. S. Richardson
  • 期刊名称:Space Weather
  • 印刷版ISSN:1542-7390
  • 出版年度:2020
  • 卷号:18
  • 期号:4
  • 页码:1-15
  • DOI:10.1029/2019SW002421
  • 语种:English
  • 出版社:American Geophysical Union
  • 摘要:Space weather poses a hazard to grounded electrical infrastructure such as high voltage (HV) transformers, through the induction of geomagnetically induced currents (GICs). Modeling GICs requires knowledge of the source magnetic field and the Earth's electrical conductivity structure, in order to calculate the geoelectric fields generated during magnetic storms, as well as knowledge of the topology of the HV network. Direct measurement of GICs at the ground neutral in substations is possible with a Hall effect probe, but such data are not widely available. To validate our HV network model, we use the differential magnetometer method (DMM) to measure GICs in the 400 kV grid of Great Britain. We present DMM measurements for the 26 August 2018 storm at a site in eastern Scotland with up to 20 A recorded. The line GIC correlates well with Hall probe measurements at a local transformer, though they differ in amplitude by an order of magnitude (a maximum of 2 A). We deployed a long-period magnetotelluric (MT) instrument to derive the local impedance tensor which can be used to predict the geoelectric field from the recorded magnetic field. Using the MT-derived electric field estimates, we model GICs within the network, accounting for the difference in magnitude between the DMM-measured line currents and earth currents at the local substation. We find that the measured line and earth GICs match the expected GICs from our network model, confirming that detailed knowledge of the complex network topology and its resistance parameters is essential for accurately computing GICs.
国家哲学社会科学文献中心版权所有