首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Long-term dependency slow feature analysis for dynamic process monitoring
  • 本地全文:下载
  • 作者:Xinrui Gao ; Yuri A.W. Shardt
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:3
  • 页码:421-426
  • DOI:10.1016/j.ifacol.2021.08.278
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIndustrial processes are large scale, highly complex systems. The complex flow of mass and energy, as well as the compensation effects of closed-loop control systems, cause significance cross-correlation and autocorrelation between process variables. To operate the process systems stably and efficiently, it is crucial to uncover the inherent characteristics of both variance structure and dynamic relationship. Long-term dependency slow feature analysis (LTSFA) is proposed in this paper to overcome the Markov assumption of the original slow feature analysis to understand the long-term dynamics of processes, based on which a monitoring procedure is designed. A simulation example and the Tennessee Eastman process benchmark are studied to show the performance of LTSFA. The proposed method can better extract the system dynamics and monitor the process variations using fewer slow features.
  • 关键词:KeywordsProcess monitoringslow feature analysisfault diagnosislatent variable model
国家哲学社会科学文献中心版权所有