首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:An integral architecture for identification of continuous-time state-space LPV models ⁎
  • 本地全文:下载
  • 作者:Manas Mejari ; Bojan Mavkov ; Marco Forgione
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:8
  • 页码:7-12
  • DOI:10.1016/j.ifacol.2021.08.573
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents anintegralarchitecture for direct identification of continuous-timelinear parameter-varying(LPV) state-space models. The main building block of the proposed architecture consist of an LPV model followed by an integral block, which is used to approximate the continuous-time state map of an LPV representation. The unknown LPV model matrices are estimated along with the state sequence by minimizing a properly constructed dual-objective criterion. A coordinate descent algorithm is employed to optimize the desired objective, which alternates between computing the unknown LPV matrices and estimating the state sequence. Thanks to the linear parametric structure induced by the LPV models, the unknown parameters within each coordinate descent step can be computed analytically via ordinary least squares. The effectiveness of the proposed methodology is assessed via a numerical example.
  • 关键词:KeywordsLinear Parameter-Varying modelscontinuous-time identificationstate-space identification
国家哲学社会科学文献中心版权所有