首页    期刊浏览 2025年04月27日 星期日
登录注册

文章基本信息

  • 标题:Estimation-Based Predictive Control of Nonlinear Processes Using Recurrent Neural Networks ⁎
  • 本地全文:下载
  • 作者:Mohammed S. Alhajeri ; Zhe Wu ; David Rincon
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:3
  • 页码:91-96
  • DOI:10.1016/j.ifacol.2021.08.224
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractMachine learning techniques have demonstrated their capability in capturing dynamic behavior of complex, nonlinear chemical processes from operational data. As full state measurements may be unavailable in chemical plants, this work integrates recurrent neural networks (RNN) within extended Luenberger observers to develop data-based state estimators. Then, an output feedback model predictive controller is designed based on state estimates provided by the RNN-based estimator to stabilize the closed-loop system at the steady-state. A chemical process example is utilized to illustrate the effectiveness of the proposed state estimation approach.
  • 关键词:KeywordsMachine learningRecurrent neural networksState estimationModel predictive controlNonlinear systemsChemical processes
国家哲学社会科学文献中心版权所有