首页    期刊浏览 2025年05月26日 星期一
登录注册

文章基本信息

  • 标题:Improving Autoencoder Training with novel Goal Functions based on Multivariable Control Concepts
  • 本地全文:下载
  • 作者:Rafael H. Martello ; Lucas Ranzan ; Marcelo Farenzena
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:3
  • 页码:73-78
  • DOI:10.1016/j.ifacol.2021.08.221
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractAutoencoders are becoming more representative in all fields of knowledge, due to their ability to classify, compress, and identify data patterns. This study objective was to propose entirely new objective functions using multivariable process control concepts as the gain matrix and Relative Gain Array to improve the quality of prediction and classification of an autoencoder. The advantages of the proposed approach are illustrated through a pulp-and-paper industry. The new function results show an improvement in the detection, leading to savings of up to 22 to 38 thousand dollars per month compared to a model using only MSE.
  • 关键词:KeywordsClassifierNeural-network modelsPaper industryPredictive controlOptimization problems
国家哲学社会科学文献中心版权所有