首页    期刊浏览 2025年07月12日 星期六
登录注册

文章基本信息

  • 标题:Data-Driven Predictive Control for Linear Parameter-Varying Systems ⁎
  • 本地全文:下载
  • 作者:Chris Verhoek ; Hossam S. Abbas ; Roland Tóth
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:8
  • 页码:101-108
  • DOI:10.1016/j.ifacol.2021.08.588
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractBased on the extension of the behavioral theory and the Fundamental Lemma for Linear Parameter-Varying (LPV) systems, this paper introduces a Data-driven Predictive Control (DPC) scheme capable to ensure reference tracking and satisfaction of Input-Output (IO) constraints for an unknown system under the conditions that (i) the system can be represented in an LPV form and (ii) an informative data-set containing measured IO and scheduling trajectories of the system is available. It is shown that if the data set satisfies a persistence of excitation condition, then a data-driven LPV predictor of future trajectories of the system can be constructed from the IO data set and online measured data. The approach represents the first step towards a DPC solution for nonlinear and time-varying systems due to the potential of the LPV framework to represent them. Two illustrative examples, including reference tracking control of a nonlinear system, are provided to demonstrate that the data-based LPV-DPC scheme, achieves similar performance as LPV model-based predictive control.
  • 关键词:KeywordsPredictive ControlData-Driven ControlLinear Parameter-Varying SystemsNon-Parametric Methods
国家哲学社会科学文献中心版权所有