首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Computation of Controlled Invariants for Nonlinear Systems: Application to Safe Neural Networks Approximation and Control ⁎
  • 本地全文:下载
  • 作者:Adnane Saoud ; Ricardo G. Sanfelice
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:5
  • 页码:91-96
  • DOI:10.1016/j.ifacol.2021.08.480
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we consider the problem of computing multidimensional interval controlled invariants for nonlinear input-affine systems. We first present sufficient conditions for an interval to be controlled invariant. Then, we introduce the concept of local framers, based on which we present a sound algorithm to compute interval controlled invariants. Finally, we show how the proposed framework makes it possible to provide safety guarantees when using deep neural networks, either as a model or a controller of nonlinear systems. Illustrative examples are provided showing the merits of the proposed approach and its scalability properties.
  • 关键词:KeywordsInvariancenonlinear systemsframersneural networks
国家哲学社会科学文献中心版权所有