首页    期刊浏览 2025年05月24日 星期六
登录注册

文章基本信息

  • 标题:A Bayesian Framework for Large-Scale Identification of Nonlinear Hybrid Systems
  • 本地全文:下载
  • 作者:Ahmad Madary ; Hamid Reza Momeni ; Alessandro Abate
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:5
  • 页码:259-264
  • DOI:10.1016/j.ifacol.2021.08.508
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, a two-level Bayesian framework is proposed for the identification of nonlinear hybrid systems from large data sets by embedding it in a four-stage procedure. At the first stage, feature vector selection techniques are used to generate a reduced-size set from the given training data set. The resulting data set then is used to identify the hybrid system using a Bayesian method, where the objective is to assign each data point to a corresponding sub-mode of the hybrid model. At the third stage, this data assignment is used to train a Bayesian classifier to separate the original data set and determine the corresponding sub-mode for all the original data points. Finally, once every data point is assigned to a sub-mode, a Bayesian estimator is used to estimate a regressor for each sub-system independently. The proposed method tested on three case studies.
  • 关键词:KeywordsNonlinear hybrid systemsSwitched nonlinear ARX modelsBayesian inferenceSystem identificationOccam’s Razor principleLarge data sets
国家哲学社会科学文献中心版权所有