首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:ModelGuard: Runtime Validation of Lipschitz-continuous Models
  • 本地全文:下载
  • 作者:Taylor J. Carpenter ; Radoslav Ivanov ; Insup Lee
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:5
  • 页码:37-42
  • DOI:10.1016/j.ifacol.2021.08.471
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents ModelGuard, a sampling-based approach to runtime model validation for Lipschitz-continuous models. Although techniques exist for the validation of many classes of models, the majority of these methods cannot be applied to the whole of Lipschitz-continuous models, which includes neural network models. Additionally, existing techniques generally consider only white-box models. By taking a sampling-based approach, we can address black-box models, represented only by an input-output relationship and a Lipschitz constant. We show that by randomly sampling from a parameter space and evaluating the model, it is possible to guarantee the correctness of traces labeled consistent and provide a confidence on the correctness of traces labeled inconsistent. We evaluate the applicability and scalability of ModelGuard in three case studies, including a physical platform.
  • 关键词:Keywordsmodel invalidationneural networkcomputational toolmonitoring
国家哲学社会科学文献中心版权所有