首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Parametric Identification of a Linear Time Invariant Model for a Subglottal System ⁎
  • 本地全文:下载
  • 作者:Javier G. Fontanet ; Juan I. Yuz ; Matías Zañartu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:577-582
  • DOI:10.1016/j.ifacol.2021.08.422
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractModels of the human body are key in bio-engineering and medical applications. This study presents the identification, in time and frequency domains, of linear time invariant models of the human subglottal system, for the clinical assessment of vocal function. For time domain identification, the input-output data corresponds to the glottal volume velocity and the acceleration registered by a sensor on the neck skin of the patient. For frequency domain identification, the frequency response of the subglottal tract module is used. Maximum likelihood and prediction error methods are applied. Additionally, the Akaike and Bayes Information Criteria are used to select the models order.
  • 关键词:KeywordsMaximum Likelihood estimatorprediction error methodsidentification algorithmparameter estimationfrequency response
国家哲学社会科学文献中心版权所有