首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Learning to Model the Grasp Space of an Underactuated Robot Gripper Using Variational Autoencoder
  • 本地全文:下载
  • 作者:Clément Rolinat ; Mathieu Grossard ; Saifeddine Aloui
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:523-528
  • DOI:10.1016/j.ifacol.2021.08.413
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractGrasp planning and most specifically the grasp space exploration is still an open issue in robotics. This article presents a data-driven oriented methodology to model the grasp space of a multi-fingered adaptive gripper for known objects. This method relies on a limited dataset of manually specified expert grasps, and uses variational autoencoder to learn grasp intrinsic features in a compact way from a computational point of view. The learnt model can then be used to generate new non-learnt gripper configurations to explore the grasp space.
  • 关键词:Keywordsmulti-fingered grippergrasp space explorationvariational autoencoder
国家哲学社会科学文献中心版权所有