首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Convergence Analysis of Weighted SPSA-based Consensus Algorithm in Distributed Parameter Estimation Problem
  • 本地全文:下载
  • 作者:Anna Sergeenko ; Victoria Erofeeva ; Oleg Granichin
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:126-131
  • DOI:10.1016/j.ifacol.2021.08.346
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we study a distributed parameter estimation problem in a large-scale network of communication sensors. The goal of the sensors is to find a global estimate of an unknown parameter minimizing, which minimizes some aggregate cost function. Each sensor can communicated to a few “neighbors”, furthermore, the communication channels have limited capacities. To solve the resulting optimization problem, we use a weighted modification of the distributed consensus-based SPSA algorithm whose main advantage over the alternative method is its ability to work in presence of arbitrary unknown-but-bounded noises whose statistical characteristics can be unknown. We provide a convergence analysis of the weighted SPSA-based consensus algorithm and show its efficiency via numerical simulations.
  • 关键词:KeywordsSensor networkrandomized algorithmsconsensusdistributed parameter estimation
国家哲学社会科学文献中心版权所有