首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:On the Uncertainty Modelling for Linear Continuous-Time Systems Utilising Sampled Data and Gaussian Mixture Models ⁎
  • 本地全文:下载
  • 作者:Rafael Orellana ; María Coronel ; Rodrigo Carvajal
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:589-594
  • DOI:10.1016/j.ifacol.2021.08.424
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper a Maximum Likelihood estimation algorithm for model error modelling in a continuous-time system is developed utilising sampled data and aStochastic Embeddingapproach. Orthonormal basis functions are used to model both the continuous-time nominal model and the error-model. The stochastic properties of the error-model distribution are defined by using a Gaussian mixture model. For the estimation of the nominal model and the error-model distribution we develop a technique based on the Expectation-Maximization algorithm using sampled data from independent experiments. The benefits of our proposal are illustrated via numerical simulations.
  • 关键词:KeywordsContinuous-time modelDiscrete-time modelGaussian mixture modelMaximum LikelihoodStochastic embedding
国家哲学社会科学文献中心版权所有