首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Toolbox for Discovering Dynamic System Relations via TAG Guided Genetic Programming
  • 本地全文:下载
  • 作者:Ştefan-Cristian Nechita ; Roland Tóth ; Dhruv Khandelwal
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:379-384
  • DOI:10.1016/j.ifacol.2021.08.389
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractData-driven modeling of nonlinear dynamical systems often requires an expert user to take critical decisions a priori to the identification procedure. Recently, an automated strategy for data driven modeling of single-input single-output (SISO) nonlinear dynamical systems based on genetic programming (GP) and tree adjoining grammars (TAG) was introduced. The current paper extends these latest findings by proposing a multi-input multi-output (MIMO) TAG modeling framework for polynomial NARMAX models. Moreover, we introduce a TAG identification toolbox in Matlab that provides implementation of the proposed methodology to solve multi-input multi-output identification problems under NARMAX noise assumption. The capabilities of the toolbox and the modeling methodology are demonstrated in the identification of two SISO and one MIMO nonlinear dynamical benchmark models.
  • 关键词:KeywordsNonlinear system identificationEquation discoveryTree Adjoining GrammarGenetic ProgrammingData-driven system modeling
国家哲学社会科学文献中心版权所有