首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Quadratic Regularization of Data-Enabled Predictive Control: Theory and Application to Power Converter Experiments
  • 本地全文:下载
  • 作者:Linbin Huang ; Jianzhe Zhen ; John Lygeros
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:192-197
  • DOI:10.1016/j.ifacol.2021.08.357
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractData-driven control that circumvents the process of system identification by providing optimal control inputs directly from system data has attracted renewed attention in recent years. In this paper, we focus on understanding the effects of the regularization on the data-enabled predictive control (DeePC) algorithm. We provide theoretical motivation and interpretation for including a quadratic regularization term. Our analysis shows that the quadratic regularization term leads to robust and optimal solutions with regards to disturbances affecting the data. Moreover, when the input/output constraints are inactive, the quadratic regularization leads to a closed-form solution of the DeePC algorithm and thus enables fast calculations. On this basis, we propose a framework for data-driven synchronization and power regulations of power converters, which is tested by high-fidelity simulations and experiments.
  • 关键词:KeywordsData-driven controlpredictive controlrobust optimizationregularizationpower converters
国家哲学社会科学文献中心版权所有