首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A novel Deep Neural Network architecture for non-linear system identification ⁎
  • 本地全文:下载
  • 作者:Luca Zancato ; Alessandro Chiuso
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:186-191
  • DOI:10.1016/j.ifacol.2021.08.356
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present a novel Deep Neural Network (DNN) architecture for non-linear system identification. We foster generalization by constraining DNN representational power. To do so, inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function). This architecture allows for automatic complexity selection based solely on available data, in this way the number of hyper-parameters that must be chosen by the user is reduced. Exploiting the highly parallelizable DNN framework (based on Stochastic optimization methods) we successfully apply our method to large scale datasets.
  • 关键词:KeywordsDeep netsBias/Variance Trade-offNonlinear system identificationRegularizationFading memory systemsStochastic system identification
国家哲学社会科学文献中心版权所有