首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Learning deep autoregressive models for hierarchical data
  • 本地全文:下载
  • 作者:Carl R. Andersson ; Niklas Wahlström ; Thomas B. Schön
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:529-534
  • DOI:10.1016/j.ifacol.2021.08.414
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe propose a model for hierarchical structured data as an extension to the stochastic temporal convolutional network. The proposed model combines an autoregressive model with a hierarchical variational autoencoder and downsampling to achieve superior computational complexity. We evaluate the proposed model on two different types of sequential data: speech and handwritten text. The results are promising with the proposed model achieving state-of-the-art performance.
  • 关键词:KeywordsDeep learningvariational autoencodersnonlinear systems
国家哲学社会科学文献中心版权所有