首页    期刊浏览 2025年05月26日 星期一
登录注册

文章基本信息

  • 标题:Data-driven System Identification of Thermal Systems using Machine Learning
  • 本地全文:下载
  • 作者:Ştefan-Cristian Nechita ; Roland Tóth ; Koos van Berkel
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:162-167
  • DOI:10.1016/j.ifacol.2021.08.352
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe paper addresses the identification of spatial-temporal mirror surface deformations as a result of laser-based heat load within the lithography process of integrated circuit production. The thermal diffusion and surface deformation are modeled by separation of the spatial-temporal effects using data-driven orthogonal decomposition. A novel tree adjoining grammar (TAG) and sparsity enhanced symbolic-regression-based learning methods are deployed to discover temporal dynamics that connect the spatial variation. The resulting data-driven procedure is applied to automatically synthetise a compact model representation of synthetic thermal effects induced mirror surface deformations.
  • 关键词:KeywordsSpatial-temporal System IdentificationSeparation of VariablesMachine LearningGenetic ProgrammingMIMO System IndentificationTree Adjoining GrammarEquation DiscoveryGaussian Proccesses
国家哲学社会科学文献中心版权所有