首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Common dynamic estimation via structured low-rank approximation with multiple rank constraints
  • 本地全文:下载
  • 作者:Antonio Fazzi ; Nicola Guglielmi ; Ivan Markovsky
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:103-107
  • DOI:10.1016/j.ifacol.2021.08.342
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe consider the problem of detecting the common dynamic among several observed signals. It has been shown in (Markovsky et al., 2019) that the problem is equivalent to a generalization of the classical Hankel low-rank approximation to the case of multiple rank constraints. We propose an optimization method based on the integration of ordinary differential equations describing a descent dynamic for a suitable functional to be minimized. We show how the proposed algorithm improves the numerical solutions computed by existing subspace methods which solve the same problem.
  • 关键词:KeywordsCommon dynamicsBehavioral approachStructured low-rank approximationData-driven estimationOptimization problem
国家哲学社会科学文献中心版权所有