首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Low-rank tensor recovery for Jacobian-based Volterra identification of parallel Wiener-Hammerstein systems
  • 本地全文:下载
  • 作者:Konstantin Usevich ; Philippe Dreesen ; Mariya Ishteva
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:463-468
  • DOI:10.1016/j.ifacol.2021.08.403
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe consider the problem of identifying a parallel Wiener-Hammerstein structure from Volterra kernels. Methods based on Volterra kernels typically resort to coupled tensor decompositions of the kernels. However, in the case of parallel Wiener-Hammerstein systems, such methods require nontrivial constraints on the factors of the decompositions. In this paper, we propose an entirely different approach: by using special sampling (operating) points for the Jacobian of the nonlinear map from past inputs to the output, we can show that the Jacobian matrix becomes a linear projection of a tensor whose rank is equal to the number of branches. This representation allows us to solve the identification problem as a tensor recovery problem.
  • 关键词:KeywordsBlock structured system identificationparallel Wiener-Hammerstein systemsVolterra kernelslow-rank tensor recoverycanonical polyadic decomposition
国家哲学社会科学文献中心版权所有