首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Deep State Space Models for Nonlinear System Identification ⁎
  • 本地全文:下载
  • 作者:Daniel Gedon ; Niklas Wahlström ; Thomas B. Schön
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:7
  • 页码:481-486
  • DOI:10.1016/j.ifacol.2021.08.406
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractDeep state space models (SSMs) are an actively researched model class for temporal models developed in the deep learning community which have a close connection to classic SSMs. The use of deep SSMs as a black-box identification model can describe a wide range of dynamics due to the flexibility of deep neural networks. Additionally, the probabilistic nature of the model class allows the uncertainty of the system to be modelled. In this work a deep SSM class and its parameter learning algorithm are explained in an effort to extend the toolbox of nonlinear identification methods with a deep learning based method. Six recent deep SSMs are evaluated in a first unified implementation on nonlinear system identification benchmarks.
  • 关键词:KeywordsNonlinear system identificationblack box modelingdeep learning
国家哲学社会科学文献中心版权所有