首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Spectral Variability of VHS J1256–1257b from 1 to 5 μm
  • 本地全文:下载
  • 作者:Yifan Zhou ; Brendan P.Bowler ; Caroline V.Morley
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2020
  • 卷号:160
  • 期号:2
  • 页码:1-15
  • DOI:10.3847/1538-3881/ab9e04
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:Multiwavelength time-resolved observations of rotationally modulated variability from brown dwarfs and giant exoplanets are the most effective method for constraining their heterogeneous atmospheric structures. In a companion paper, we reported the discovery of strong near-infrared variability in HST/WFC3/G141 light curves of the very red L-dwarf companion VHS J1256–1257b. In this paper, we present a follow-up 36 hr Spitzer/IRAC Channel 2 light curve together with an in-depth analysis of the Hubble space telescope (HST) and the Spitzer data. The combined data set provides time-resolved light curves of VHS1256b sampling 1.1 to 4.5 μm. The Spitzer light curve is best fit with a single sine wave with a period of 22.04 ± 0.05 hr and a peak-to-peak amplitude of 5.76 ± 0.04%. Combining the period with a previously measured projected rotational velocity (v i sin ), we find that VHS1256b is most consistent with equatorial viewing geometry. The HST/G141+Spitzer spectral energy distribution favors a model with a Teff of 1000 K and low surface gravity with disequilibrium chemistry. The spectral variability of VHS1256b is consistent with predictions from partly cloudy models, suggesting that heterogeneous clouds are the dominant source of the observed modulations. We find evidence at the 3.3σ level for amplitude variations within the 1.67 μm CH4 band, which is the first such detection for a variable L-dwarf. We compare the HST/G141 time-resolved spectra of three red L-dwarfs with high-amplitude near-infrared rotational modulations and find that although their time-averaged spectra are similar, their spectroscopic variabilities exhibit notable differences. This diversity reinforces the advantage of time-resolved spectroscopic observations for understanding the atmospheres of brown dwarfs and directly imaged exoplanets.
国家哲学社会科学文献中心版权所有