首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems
  • 本地全文:下载
  • 作者:Xue Ning ; Richen Lin ; Richard O'Shea
  • 期刊名称:iScience
  • 印刷版ISSN:2589-0042
  • 出版年度:2021
  • 卷号:24
  • 期号:9
  • 页码:1-31
  • DOI:10.1016/j.isci.2021.102998
  • 语种:English
  • 出版社:Elsevier
  • 摘要:SummaryBiomethane is suggested as an advanced biofuel for the hard-to-abate sectors such as heavy transport. However, future systems that optimize the resource and production of biomethane have yet to be definitively defined. This paper assesses the opportunity of integrating anaerobic digestion (AD) with three emerging bioelectrochemical technologies in a circular cascading bioeconomy, including for power-to-gas AD (P2G-AD), microbial electrolysis cell AD (MEC-AD), and AD microbial electrosynthesis (AD-MES). The mass and energy flow of the three bioelectrochemical systems are compared with the conventional AD amine scrubber system depending on the availability of renewable electricity. An energy balance assessment indicates that P2G-AD, MEC-AD, and AD-MES circular cascading bioelectrochemical systems gain positive energy outputs by using electricity that would have been curtailed or constrained (equivalent to a primary energy factor of zero). This analysis of technological innovation, aids in the design of future cascading circular biosystems to produce sustainable advanced biofuels.Graphical abstractDisplay OmittedElectrochemical energy production; Microbiology; Energy systems
国家哲学社会科学文献中心版权所有