首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Solid-state self-template synthesis of Ta-doped Li 2ZnTi 3O 8 spheres for efficient and durable lithium storage
  • 本地全文:下载
  • 作者:Dongwei Ma ; Jiahui Li ; Jing Yang
  • 期刊名称:iScience
  • 印刷版ISSN:2589-0042
  • 出版年度:2021
  • 卷号:24
  • 期号:9
  • 页码:1-18
  • DOI:10.1016/j.isci.2021.102991
  • 语种:English
  • 出版社:Elsevier
  • 摘要:SummaryTa-doped Li2ZnTi3O8(LZTO) spheres (Li2ZnTi3-xTaxO8; wherexis the synthetic chemical input,x = 0, 0.03, 0.05, 0.07) are synthesized via solid-state reaction using mesoporous TiO2spheres as the self-template. The majority of Ta5+ions are uniformly doped into crystal lattices of LZTO through the Ti↔Ta substitution, and the rest forms the piezoelectric LiTaO3secondary phase on the surface, as confirmed by X-ray diffraction refinement, Raman spectroscopy, density functional theory, and electron microscopy. Electrochemical impedance spectroscopy demonstrates that the Ta5+doping creates rapid electronic transportation channels for high Li+ion diffusion kinetics; however, the LiTaO3surface coating is beneficial to improve the electronic conductivity. At the optimalx = 0.05, Li2ZnTi3-xTaxO8spheres exhibit a reversible capacity of 90.2 mAh/g after 2000 cycles with a high coulombic efficiency of ≈100% at 5.0 A/g, thus enabling a promising anode material for lithium-ion batteries with high power and energy densities.Graphical abstractDisplay OmittedHighlights•A facile and scalable synthesis of Ta-doped Li2ZnTi3O8spheres through solid-state reaction using mesoporous anatase TiO2spheres as the self-template•A combined experimental and theoretical study is conducted to reveal the phase behaviors of Ta-doped Li2ZnTi3O8during the cyclic charge/discharge process•Ta5+doping creates rapid electronic transportation channels for high Li+ion diffusion kinetics•A reversible capacity of 90.2 mAh/g after 2000 cycles with a high coulombic efficiency of ≈100% at 5.0 A/g is achieved using optimal Ta-doped Li2ZnTi3O8spheresEnergy systems; Energy storage; Materials synthesis; Energy materials
国家哲学社会科学文献中心版权所有