期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:33
DOI:10.1073/pnas.2022078118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Circular chromosomes in rod-shaped bacteria exist inside a cell in two distinct configurations, “transverse” and “longitudinal,” relative to the long cell axis, with chromosomal loci occupying specific cellular locations in both cases. Bacteria with longitudinal chromosome organization (e.g.,
Caulobacter crescentus) typically tether their origins of replication to the cell membrane and do not undergo overlapping rounds of replication. In contrast, bacteria with transverse organization (e.g.,
Escherichia coli) orient their chromosomes by an unknown mechanism and have lifestyles compatible with overlapping rounds of replication. Here, we address the relative roles of two major players in chromosome organization–segregation and propose a model of how
E. coli maintains chromosome conformation and orientation inside cells and how this organization is propagated over generations.
Structural maintenance of chromosomes (SMC) complexes contribute to chromosome organization in all domains of life. In
Escherichia coli, MukBEF, the functional SMC homolog, promotes spatiotemporal chromosome organization and faithful chromosome segregation. Here, we address the relative contributions of MukBEF and the replication terminus (
ter) binding protein, MatP, to chromosome organization–segregation. We show that MukBEF, but not MatP, is required for the normal localization of the origin of replication to midcell and for the establishment of translational symmetry between newly replicated sister chromosomes. Overall, chromosome orientation is normally maintained through division from one generation to the next. Analysis of loci flanking the replication termination region (
ter), which demark the ends of the linearly organized portion of the nucleoid, demonstrates that MatP is required for maintenance of chromosome orientation. We show that DNA-bound β
2-processivity clamps, which mark the lagging strands at DNA replication forks, localize to the cell center, independent of replisome location but dependent on MukBEF action, and consistent with translational symmetry of sister chromosomes. Finally, we directly show that the older (“immortal”) template DNA strand, propagated from previous generations, is preferentially inherited by the cell forming at the old pole, dependent on MukBEF and MatP. The work further implicates MukBEF and MatP as central players in chromosome organization, segregation, and nonrandom inheritance of genetic material and suggests a general framework for understanding how chromosome conformation and dynamics shape subcellular organization.