首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Overview of Multi-Modal Brain Tumor MR Image Segmentation
  • 本地全文:下载
  • 作者:Wenyin Zhang ; Yong Wu ; Bo Yang
  • 期刊名称:Healthcare
  • 电子版ISSN:2227-9032
  • 出版年度:2021
  • 卷号:9
  • 期号:8
  • DOI:10.3390/healthcare9081051
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:The precise segmentation of brain tumor images is a vital step towards accurate diagnosis and effective treatment of brain tumors. Magnetic Resonance Imaging (MRI) can generate brain images without tissue damage or skull artifacts, providing important discriminant information for clinicians in the study of brain tumors and other brain diseases. In this paper, we survey the field of brain tumor MRI images segmentation. Firstly, we present the commonly used databases. Then, we summarize multi-modal brain tumor MRI image segmentation methods, which are divided into three categories: conventional segmentation methods, segmentation methods based on classical machine learning methods, and segmentation methods based on deep learning methods. The principles, structures, advantages and disadvantages of typical algorithms in each method are summarized. Finally, we analyze the challenges, and suggest a prospect for future development trends.
  • 关键词:enimage segmentation;brain tumor;magnetic resonance imaging;multi-modality
国家哲学社会科学文献中心版权所有