首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Predicting hosts based on early SARS-CoV-2 samples and analyzing the 2020 pandemic
  • 本地全文:下载
  • 作者:Qian Guo ; Mo Li ; Chunhui Wang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-96903-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The SARS-CoV-2 pandemic has raised concerns in the identification of the hosts of the virus since the early stages of the outbreak. To address this problem, we proposed a deep learning method, DeepHoF, based on extracting viral genomic features automatically, to predict the host likelihood scores on five host types, including plant, germ, invertebrate, non-human vertebrate and human, for novel viruses. DeepHoF made up for the lack of an accurate tool, reaching a satisfactory AUC of 0.975 in the five-classification, and could make a reliable prediction for the novel viruses without close neighbors in phylogeny. Additionally, to fill the gap in the efficient inference of host species for SARS-CoV-2 using existing tools, we conducted a deep analysis on the host likelihood profile calculated by DeepHoF. Using the isolates sequenced in the earliest stage of the COVID-19 pandemic, we inferred that minks, bats, dogs and cats were potential hosts of SARS-CoV-2, while minks might be one of the most noteworthy hosts. Several genes of SARS-CoV-2 demonstrated their significance in determining the host range. Furthermore, a large-scale genome analysis, based on DeepHoF’s computation for the later pandemic in 2020, disclosed the uniformity of host range among SARS-CoV-2 samples and the strong association of SARS-CoV-2 between humans and minks.
国家哲学社会科学文献中心版权所有