首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:SAMD9L autoinflammatory or ataxia pancytopenia disease mutations activate cell-autonomous translational repression
  • 本地全文:下载
  • 作者:Amanda J. Russell ; Paul E. Gray ; John B. Ziegler
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:34
  • DOI:10.1073/pnas.2110190118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The experiments here advance understanding of the function of the SAMD9L gene and protein in innate immune mechanisms in resisting virus infection and in the pathogenesis of inflammatory, hematological, and neurological disorders. The clinical syndrome defined in two children with de novo truncating SAMD9L mutations expands the phenotypes in this newly recognized autoinflammatory disorder. Analysis of cells expressing normal or mutant SAMD9L reveals the protein represses protein translation, with the truncating mutations greatly exaggerating this activity. The experiments find equally potent gain of function caused by the truncating mutations or a recurrent missense mutation associated with clinically milder ataxia and pancytopenia syndromes, demonstrating that diverse clinical manifestations can arise from mutations that appear cell-biologically equivalent. Sterile α motif domain-containing protein 9-like (SAMD9L) is encoded by a hallmark interferon-induced gene with a role in controlling virus replication that is not well understood. Here, we analyze SAMD9L function from the perspective of human mutations causing neonatal-onset severe autoinflammatory disease. Whole-genome sequencing of two children with leukocytoclastic panniculitis, basal ganglia calcifications, raised blood inflammatory markers, neutrophilia, anemia, thrombocytopaenia, and almost no B cells revealed heterozygous de novo SAMD9L mutations, p.Asn885Thrfs*6 and p.Lys878Serfs*13. These frameshift mutations truncate the SAMD9L protein within a domain a region of homology to the nucleotide-binding and oligomerization domain (NOD) of APAF1, ∼80 amino acids C-terminal to the Walker B motif. Single-cell analysis of human cells expressing green fluorescent protein (GFP)-SAMD9L fusion proteins revealed that enforced expression of wild-type SAMD9L repressed translation of red fluorescent protein messenger RNA and globally repressed endogenous protein translation, cell autonomously and in proportion to the level of GFP-SAMD9L in each cell. The children’s truncating mutations dramatically exaggerated translational repression even at low levels of GFP-SAMD9L per cell, as did a missense Arg986Cys mutation reported recurrently as causing ataxia pancytopenia syndrome. Autoinflammatory disease associated with SAMD9L truncating mutations appears to result from an interferon-induced translational repressor whose activity goes unchecked by the loss of C-terminal domains that may normally sense virus infection.
  • 关键词:entranslational repression;virus sensing;pathogen-associated molecular pattern receptor;autoinflammatory disease;nucleotide-binding and oligomerization domain
国家哲学社会科学文献中心版权所有