首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Adaptive staffing can mitigate essential worker disease and absenteeism in an emerging epidemic
  • 本地全文:下载
  • 作者:Elliot Aguilar ; Nicholas J. Roberts ; Ismail Uluturk
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:34
  • DOI:10.1073/pnas.2105337118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Essential worker absenteeism has been a pressing problem in the COVID-19 pandemic. Nearly 20% of US hospitals experienced staff shortages, exhausting replacement pools and at times requiring COVID-positive healthcare workers to remain at work. To our knowledge there are no data-informed models examining how different staffing strategies affect epidemic dynamics on a network in the context of rising worker absenteeism. Here we develop a susceptible–infected–quarantined-recovered adaptive network model using pair approximations to gauge the effects of worker replacement versus redistribution of work among remaining healthy workers in the early epidemic phase. Parameterized with hospital data, the model exhibits a time-varying trade-off: Worker replacement minimizes peak prevalence in the early phase, while redistribution minimizes final outbreak size. Any “ideal” strategy requires balancing the need to maintain a baseline number of workers against the desire to decrease total number infected. We show that one adaptive strategy—switching from replacement to redistribution at epidemic peak—decreases disease burden by 9.7% and nearly doubles the final fraction of healthy workers compared to pure replacement.
  • 关键词:enCOVID-19;pairwise approximation;network model;infectious disease;essential workers
国家哲学社会科学文献中心版权所有