摘要:Background
Violence against women particularly that is committed by an intimate partner is becoming a social and public health problem across the world. Studies show that the spatial variation in the distribution of domestic violence was commonly attributed to neighborhood-level predictors. Despite the prominent benefits of spatial techniques, research findings are limited. Therefore, the current study intends to determine the spatial distribution and predictors of domestic violence among women aged 15–49 in Ethiopia.
Methods
Data from the Ethiopian demographic health survey 2016 were used to determine the spatial distribution of domestic violence in Ethiopia. Spatial auto-correlation statistics (both Global and Local Moran’s I) were used to assess the spatial distribution of domestic violence cases in Ethiopia. Spatial locations of significant clusters were identified by using Kuldorff’s Sat Scan version 9.4 software. Finally, binary logistic regression and a generalized linear mixed model were fitted to identify predictors of domestic violence.
Result
The study found that spatial clustering of domestic violence cases in Ethiopia with Moran’s I value of 0.26, Z score of 8.26, and
P value < 0.01. The Sat Scan analysis identifies the primary most likely cluster in Oromia, SNNP regions, and secondary cluster in the Amhara region. The output from regression analysis identifies low economic status, partner alcohol use, witnessing family violence, marital controlling behaviors, and community acceptance of wife-beating as significant predictors of domestic violence.
Conclusion
There is spatial clustering of IPV cases in Ethiopia. The output from regression analysis shows that individual, relationship, and community-level predictors were strongly associated with IPV. Based upon our findings, we give the following recommendation: The government should give prior concern for controlling factors such as high alcohol consumption, improper parenting, and community norm that encourage IPV that were responsible for IPV in the identified hot spot areas.