摘要:Water droplet rolling motion over the hydrophobized and optically transparent micro-post array surfaces is examined towards dust removal pertinent to self-cleaning applications. Micro-post arrays are replicated over the optically transparent polydimethylsiloxane (PDMS) surfaces. The influence of micro-post array spacing on droplet rolling dynamics is explored for clean and dusty surfaces. The droplet motions over clean and dusty micro-post array surfaces are monitored and quantified. Flow inside the rolling droplet is simulated adopting the experimental conditions. Findings reveal that micro-post gap spacing significantly influences droplet velocity on clean and dusty hydrophobized surfaces. Air trapped within the micro-post gaps acts like a cushion reducing the three-phase contact line and interfacial contact area of the rolling droplet. This gives rise to increased droplet velocity over the micro-post array surface. Droplet kinetic energy dissipation remains large for plain and micro-post arrays with small gap spacings. A Rolling droplet can pick up dust particles from micro-post array gaps; however, few dust residues are observed for large gap spacings. Nevertheless, dust residues are small in quantity over hydrophobized micro-post array surfaces.