首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Study on the Aging Resistance of Polyurethane Precursor Modified Bitumen and its Mechanism
  • 本地全文:下载
  • 作者:Liang Zhang ; Pengfei Li ; Guanfeng Hu
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:17
  • 页码:9520
  • DOI:10.3390/su13179520
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:As an environmentally friendly alternative for the production of high-performance modified asphalt by chemical reactions, a liquid-state polyurethane-precursor-based reactive modifier (PRM) was developed and employed in the asphalt modification. In contrast to the traditional solid bitumen modifier, for example, rubber and thermoplastic elastomers, the PRM as a liquid modifier has more significant advantages in reducing energy consumption and improving asphalt performance, which has attracted widespread attention. However, the aging resistance and its mechanism are not clear. In view of this, the aging performance of two PRM-modified bitumen (PRM-70 and PRM-90), under the short-term thermo-oxidative aging, long-term thermo-oxidative aging, and ultraviolet (UV) aging conditions, was investigated through chemical and mechanical methods. The results show that the PRM-90 is more susceptible to the thermos-oxidative aging and UV aging. The use of low-penetration-grade bitumen and ensuring an adequate reaction are beneficial to enhance the aging resistance of PRM-modified bitumen. The impact of aging on high-temperature performance of PRM-modified bitumen is great, followed by the low-temperature performance and the anti-fatigue performance. The mechanic-relevant rheological aging index (<i>RAI</i>) and fracture energy index (<i>FEI</i>) are recommended to evaluate aging properties for PRM-modified bitumen. This study not only provides support for further research on the relationship between the aging properties and mechanical performance of PRM-modified bitumen, but also provides a reference for conducting mechanism analysis.
国家哲学社会科学文献中心版权所有