标题:Hyperspectral imaging and remote trace detection of cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5 d] imidazole (BCHMX) compared with traditional explosives using laser induced fluorescence
摘要:Abstractcis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d] imidazole (BCHMX) is an advanced energetic compound that expected to spread worldwide in the near future. Since, no approved remote detection methods were reported in current literature for this material, we performed hyper-spectral imaging and laser induced fluorescence (LIF) to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems. For this purpose, an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives, HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane), RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), PETN (2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate). The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm. When light source was replaced by a 405 nm laser diode illuminator, a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm2. Finally, we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 μg/cm2.Highlights•Pioneer study on remote trace detection of BCHXM in comparison with other explosives.•A novel combined detection technique merging LIF with hyperspectral imaging.•Long standoff traces detection of 15 m at detection limit of 1ug for explosives.•Strong BCHMX LIF intensity was detected in comparison with traditional explosives using 405 nm.