摘要:AbstractA melt-cast Duan-Zhang-Kim (DZK) mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism. A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component, and the mesoscopic model is validated against the experimental data. Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.