首页    期刊浏览 2025年12月21日 星期日
登录注册

文章基本信息

  • 标题:Location-based Sentiment Analyses and Visualization of Twitter Election Data
  • 本地全文:下载
  • 作者:USSAMA YAQUB ; NITESH SHARMA ; RACHIT PABREJA
  • 期刊名称:Digital Government: Research and Practice
  • 印刷版ISSN:2691-199X
  • 电子版ISSN:2639-0175
  • 出版年度:2020
  • 卷号:1
  • 页码:1-19
  • DOI:10.1145/3339909
  • 语种:English
  • 出版社:Association for Computing Machinery
  • 摘要:In this article, we perform sentiment analyses of Twitter location data. We use two case studies: US presidential elections of 2016 and UK general elections of 2017.For US elections,we plot state-wise user sentiment towards Hillary Clinton and Donald Trump.For UKelections, we download two disparate datasets, using keywords and location coordinates,looking for similar tendencies in sentiment towards political candidates and parties.Theoverall objective of the two case studies is to evaluate similarity between sentiment of location-based tweets and on-ground public opinion reflected in election results. We discoverTwitter location sentiment does indeed corroborate with the election result in both cases.Wealso discover similar tendencies in Twitter sentiment towards political candidates and partiesregardless of the methodology adopted for data collection.
  • 关键词:Twitter;location data;sentiment analysis
国家哲学社会科学文献中心版权所有