期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:37
DOI:10.1073/pnas.2110669118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Soil is a complex and competitive environment, forcing its inhabitants to develop strategies against competitors, predators, and pathogens. Identifying and understanding the molecular mechanisms has translational value for medicine, ecology, and agriculture. In this study, we show that a member of important soil-dwelling fungi (
Mortierella) forms a tight alliance with toxin-producing bacteria (
Mycoavidus) that live within the fungal hyphae and protect their host from nematode attack. This discovery is relevant since
Mortierella species correlate with healthy soils and are used as plant growth–promoting fungi in agriculture. Unraveling an ecological role for fungal endosymbionts in
Mortierella, our results contribute to the understanding of a mainspring in fungal–endobacterial symbioses and open the possibility for the development of new biocontrol agents.
Fungi of the genus
Mortierella occur ubiquitously in soils where they play pivotal roles in carbon cycling, xenobiont degradation, and promoting plant growth. These important fungi are, however, threatened by micropredators such as fungivorous nematodes, and yet little is known about their protective tactics. We report that
Mortierella verticillata NRRL 6337 harbors a bacterial endosymbiont that efficiently shields its host from nematode attacks with anthelmintic metabolites. Microscopic investigation and 16S ribosomal DNA analysis revealed that a previously overlooked bacterial symbiont belonging to the genus
Mycoavidus dwells in
M. verticillata hyphae. Metabolic profiling of the wild-type fungus and a symbiont-free strain obtained by antibiotic treatment as well as genome analyses revealed that highly cytotoxic macrolactones (CJ-12,950 and CJ-13,357,
syn. necroxime C and D), initially thought to be metabolites of the soil-inhabiting fungus, are actually biosynthesized by the endosymbiont. According to comparative genomics, the symbiont belongs to a new species (
CandidatusMycoavidus necroximicus) with 12% of its 2.2 Mb genome dedicated to natural product biosynthesis, including the modular polyketide-nonribosomal peptide synthetase for necroxime assembly. Using
Caenorhabditis elegans and the fungivorous nematode
Aphelenchus avenae as test strains, we show that necroximes exert highly potent anthelmintic activities. Effective host protection was demonstrated in cocultures of nematodes with symbiotic and chemically complemented aposymbiotic fungal strains. Image analysis and mathematical quantification of nematode movement enabled evaluation of the potency. Our work describes a relevant role for endofungal bacteria in protecting fungi against mycophagous nematodes.