摘要:Culex pipiens pallens is an important vector of lymphatic filariasis and epidemic encephalitis. Mosquito control is the main strategy used for the prevention of mosquito-borne diseases.
Bacillus thuringiensis israelensis (
Bti) is an entomopathogenic bacterium widely used in mosquito control. In this study, we profiled the microbiota and transcriptional response of the larvae of
Cx. pipiens pallens exposed to different concentrations of
Bti. The results demonstrated that
Bti induced a significant effect on both the microbiota and gene expression of
Cx. pipiens pallens. Compared to the control group, the predominant bacteria changed from Actinobacteria to Firmicutes, and with increase in the concentration of
Bti, the abundance of Actinobacteria was gradually reduced. Similar changes were also detected at the genus level, where
Bacillus replaced
Microbacterium, becoming the predominant genus in
Bti-exposed groups. Furthermore, alpha diversity analysis indicated that
Bti exposure changed the diversity of the microbota, possibly because the dysbiosis caused by the
Bti infection inhibits some bacteria and provides opportunities to other opportunistic taxa. Pathway analysis revealed significant enhancement for processes associated with sphingolipid metabolism, glutathione metabolism and glycerophospholipid metabolism between all
Bti-exposed groups and control group. Additionally, genes associated with the Toll and Imd signaling pathway were found to be notably upregulated.
Bti infection significantly changed the bacterial community of larvae of
Cx. pipiens pallens.