首页    期刊浏览 2025年02月25日 星期二
登录注册

文章基本信息

  • 标题:Two-level modeling approach to identify the regulatory dynamics capturing drug response heterogeneity in single-cells
  • 本地全文:下载
  • 作者:Madalena Chaves ; Luis C. Gomes-Pereira ; Jérémie Roux
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-99943-0
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Single-cell multimodal technologies reveal the scales of cellular heterogeneity impairing cancer treatment, yet cell response dynamics remain largely underused to decipher the mechanisms of drug resistance they take part in. As the phenotypic heterogeneity of a clonal cell population informs on the capacity of each single-cell to recapitulate the whole range of observed behaviors, we developed a modeling approach utilizing single-cell response data to identify regulatory reactions driving population heterogeneity in drug response. Dynamic data of hundreds of HeLa cells treated with TNF-related apoptosis-inducing ligand (TRAIL) were used to characterize the fate-determining kinetic parameters of an apoptosis receptor reaction model. Selected reactions sets were augmented to incorporate a mechanism that leads to the separation of the opposing response phenotypes. Using a positive feedback loop motif to identify the reaction set, we show that caspase-8 is able to encapsulate high levels of heterogeneity by introducing a response delay and amplifying the initial differences arising from natural protein expression variability. Our approach enables the identification of fate-determining reactions that drive the population response heterogeneity, providing regulatory targets to curb the cell dynamics of drug resistance.
国家哲学社会科学文献中心版权所有