摘要:Ultrasound-assisted processing has potential application advantages as an emerging technology for preparing tomato paste. This work explored the influence of ultrasound break at 22 °C (US-Break-22) and 65 °C (US-Break-65) on the viscosity, rheological properties and nutritional values of newly prepared tomato paste, compared with traditional thermal break at 65 °C (Break-65) and 90 °C (Break-90). Results showed that the US-Break-65 paste had the largest apparent viscosity, yield stress, consistency coefficient, solid-like nature, and large amplitude oscillatory shear behavior, followed by the US-Break-22 paste, Break-90 paste, and Break-65 paste. Based on the results of the pectin-related enzymes, particle size, and serum pectin of the pastes, it was revealed that the above-mentioned properties were mainly determined by the particle size and pectin content in their serum. The level of ascorbic acid followed the order of US-Break-22 paste > US-Break-65 paste > Break-65 paste > Break-90 paste. The level of total carotenoids followed the order of US-Break-22 paste ≈ US-Break-65 paste > Break-90 paste ≈ Break-65 paste. The level of total
cis-carotenoids followed the order of US-Break-65 paste > US-Break-22 paste > Break-90 paste > Break-65 paste. The level of phenolics and antioxidant activities followed the same order of US-Break-22 paste > US-Break-65 paste > Break-90 paste > Break-65 paste. Overall, the viscosity, rheological properties and nutritional values of the tomato pastes prepared by US-Break-65 and US-Break-22 were significantly higher than those prepared by Break-65 and Break-90. Therefore, ultrasound assisted processing can prepare high quality tomato paste and can be widely implemented in the tomato paste processing industry.