首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Using machine learning for predicting intensive care unit resource use during the COVID-19 pandemic in Denmark
  • 本地全文:下载
  • 作者:Stephan Sloth Lorenzen ; Mads Nielsen ; Espen Jimenez-Solem
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-98617-1
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The COVID-19 pandemic has put massive strains on hospitals, and tools to guide hospital planners in resource allocation during the ebbs and flows of the pandemic are urgently needed. We investigate whether machine learning (ML) can be used for predictions of intensive care requirements a fixed number of days into the future. Retrospective design where health Records from 42,526 SARS-CoV-2 positive patients in Denmark was extracted. Random Forest (RF) models were trained to predict risk of ICU admission and use of mechanical ventilation after n days ( n  = 1, 2, …, 15). An extended analysis was provided for n  = 5 and n  = 10. Models predicted n-day risk of ICU admission with an area under the receiver operator characteristic curve (ROC-AUC) between 0.981 and 0.995, and n-day risk of use of ventilation with an ROC-AUC between 0.982 and 0.997. The corresponding n-day forecasting models predicted the needed ICU capacity with a coefficient of determination (R 2) between 0.334 and 0.989 and use of ventilation with an R 2 between 0.446 and 0.973. The forecasting models performed worst, when forecasting many days into the future (for large n). For n  = 5, ICU capacity was predicted with ROC-AUC 0.990 and R 2 0.928, and use of ventilator was predicted with ROC-AUC 0.994 and R 2 0.854. Random Forest-based modelling can be used for accurate n-day forecasting predictions of ICU resource requirements, when n is not too large.
国家哲学社会科学文献中心版权所有