首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Visual explanations from spiking neural networks using inter-spike intervals
  • 本地全文:下载
  • 作者:Youngeun Kim ; Priyadarshini Panda
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-98448-0
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:By emulating biological features in brain, Spiking Neural Networks (SNNs) offer an energy-efficient alternative to conventional deep learning. To make SNNs ubiquitous, a ‘visual explanation’ technique for analysing and explaining the internal spike behavior of such temporal deep SNNs is crucial. Explaining SNNs visually will make the network more transparent giving the end-user a tool to understand how SNNs make temporal predictions and why they make a certain decision. In this paper, we propose a bio-plausible visual explanation tool for SNNs, called Spike Activation Map (SAM). SAM yields a heatmap ( i. e., localization map) corresponding to each time-step of input data by highlighting neurons with short inter-spike interval activity. Interestingly, without the use of gradients and ground truth, SAM produces a temporal localization map highlighting the region of interest in an image attributed to an SNN’s prediction at each time-step. Overall, SAM outsets the beginning of a new research area ‘ explainable neuromorphic computing’ that will ultimately allow end-users to establish appropriate trust in predictions from SNNs.
国家哲学社会科学文献中心版权所有