首页    期刊浏览 2024年09月20日 星期五
登录注册

文章基本信息

  • 标题:Defects in 8-oxo-guanine repair pathway cause high frequency of C > A substitutions in neuroblastoma
  • 本地全文:下载
  • 作者:Marlinde L. van den Boogaard ; Rurika Oka ; Anne Hakkert
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:36
  • DOI:10.1073/pnas.2007898118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The collection of large amounts of whole-genome sequencing data allowed for identification of mutational signatures, which are characteristic combinations of substitutions in the context of neighboring bases. The clinical significance of these mutational signatures is still largely unknown. In neuroblastoma, we showed that high levels of cytosine > adenine (C > A) substitutions are associated with poor survival. We identified that these high levels of C > A substitutions result from defects in 8-oxo-guanine repair, specifically from copy number loss of the DNA glycosylases MUTYH and OGG1. The high frequency of C > A substitutions in neuroblastoma contributes to the increased adaptive capacity of these tumors. Thereby, we link basic molecular genetic mutation patterns to clinically significant tumor evolution processes. Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH. Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution.
  • 关键词:enneuroblastoma;8-oxo-guanine repair;MUTYH;OGG1;mutational signatures
国家哲学社会科学文献中心版权所有