摘要:The microbiome of the anaerobic digester (AD) regulates the level of energy production. To assess the microbiome diversity and composition in different stages of anaerobic digestion, we collected 16 samples from the AD of cow dung (CD) origin. The samples were categorized into four groups (Group-I, Group-II, Group-III and Group-IV) based on the level of energy production (CH
4%), and sequenced through whole metagenome sequencing (WMS). Group-I (n = 2) belonged to initial time of energy production whereas Group-II (n = 5), Group-III (n = 5), and Group-IV (n = 4) had 21–34%, 47–58% and 71–74% of CH
4, respectively. The physicochemical analysis revealed that level of energy production (CH
4%) had significant positive correlation with digester pH (r = 0.92, p < 0.001), O
2 level (%) (r = 0.54, p < 0.05), and environmental temperature (°C) (r = 0.57, p < 0.05). The WMS data mapped to 2800 distinct bacterial, archaeal and viral genomes through PathoScope (PS) and MG-RAST (MR) analyses. We detected 768, 1421, 1819 and 1774 bacterial strains in Group-I, Group-II, Group-III and Group-IV, respectively through PS analysis which were represented by
Firmicutes,
Bacteroidetes,
Proteobacteria,
Actinobacteria,
Spirochaetes and
Fibrobacteres phyla (> 93.0% of the total abundances). Simultaneously, 343 archaeal strains were detected, of which 95.90% strains shared across four metagenomes. We identified 43 dominant species including 31 bacterial and 12 archaeal species in AD microbiomes, of which only archaea showed positive correlation with digester pH, CH
4 concentration, pressure and temperature (Spearman correlation; r > 0.6, p < 0.01). The indicator species analysis showed that the species
Methanosarcina vacuolate,
Dehalococcoides mccartyi,
Methanosarcina sp. Kolksee and
Methanosarcina barkeri were highly specific for energy production. The correlation network analysis showed that different strains of
Euryarcheota and
Firmicutes phyla exhibited significant correlation (p = 0.021, Kruskal–Wallis test; with a cutoff of 1.0) with the highest level (74.1%) of energy production (Group-IV). In addition, top CH
4 producing microbiomes showed increased genomic functional activities related to one carbon and biotin metabolism, oxidative stress, proteolytic pathways, membrane-type-1-matrix-metalloproteinase (MT1-MMP) pericellular network, acetyl-CoA production, motility and chemotaxis. Importantly, the physicochemical properties of the AD including pH, CH
4 concentration (%), pressure, temperature and environmental temperature were found to be positively correlated with these genomic functional potentials and distribution of ARGs and metal resistance pathways (Spearman correlation; r > 0.5, p < 0.01). This study reveals distinct changes in composition and diversity of the AD microbiomes including different indicator species, and their genomic features that are highly specific for energy production.