首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Policy Iteration and Event-Triggered Robust Adaptive Dynamic Programming for Large-Scale Systems ⁎
  • 本地全文:下载
  • 作者:Fuyu Zhao ; Weinan Gao ; Tengfei Liu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:14
  • 页码:376-381
  • DOI:10.1016/j.ifacol.2021.10.383
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, an event-triggered robust optimal control approach is proposed for large-scale systems with both parametric and dynamic uncertainties through robust adaptive dynamic programming, policy iteration, and small-gain techniques. By using the input and output data, the unmeasurable states are reconstructed instead of constructing a Luenberger observer. Starting from an admissible control policy, an event-based feedback control policy is learned to save the communication resources and reduce the number of control updates. The closed-loop stability and the convergence of the proposed algorithm are analyzed by using Lyapunov and small-gain techniques. A practical example of multimachine power systems with governor controllers is given to demonstrate the effectiveness of the proposed method.
  • 关键词:KeywordsOutput-feedbackevent-triggered controlrobust adaptive dynamic programming (RADP)small-gain theorylarge-scale system
国家哲学社会科学文献中心版权所有