首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:SSVEP-EEG Signal Classification based on Emotiv EPOC BCI and Raspberry Pi ⁎
  • 本地全文:下载
  • 作者:Víctor Asanza ; Karla Avilés-Mendoza ; Hector Trivino-Gonzalez
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:15
  • 页码:388-393
  • DOI:10.1016/j.ifacol.2021.10.287
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis work presents the experimental design for recording Electroencephalography (EEG) signals in 20 test subjects submitted to Steady-state visually evoked potential (SSVEP). The stimuli were performed with frequencies of 7, 9, 11 and 13 Hz. Furthermore, the implementation of a classification system based on SSVEP-EEG signals from the occipital region of the brain obtained with the Emotiv EPOC device is presented. These data were used to train algorithms based on artificial intelligence in a Raspberry Pi 4 Model B. Finally, this work demonstrates the possibility of classifying with times of up to 1.8 ms in embedded systems with low computational capacity.
  • 关键词:KeywordsBrain Computer InterfaceSSVEP-EEGClassificationMachine LearningData acquisitionXGBoost
国家哲学社会科学文献中心版权所有