摘要:Nowadays, society and business rely heavily on Information and Communication Technology (ICT) systems, which are progressing faster than ever. To stay on pace with them, focus is shifted towards integration of individual ICT systems into complex systems, which offers more functionality than simply the sum of individual systems. In this regard, Cyber-Physical Systems (CPSs) have gained significant importance and System-of-Systems (SoS) approach has been suggested for modeling complex CPSs to achieve a higher level goal, by dynamically building a large system with existing autonomous, and heterogeneous constituent systems (CSs). An important challenge in a system of Cyber-Physical Systems (SoCPSs) is to develop seamless collaboration between autonomous constituent-CPSs (CCPSs) to coordinate their operations. In this paper, we propose an agent based coordination mechanism to coordinate resource allocation and demand in SoCPSs. The approach models each CCPS as an agent and describes how multiple autonomous CCPSs, i.e., Virtual Power Plant (VPP), Commercial Greenhouse Growers (CGGs), communicate and collaborate with each other asynchronously through negotiation and how potential conflicts between CCPSs with conflicting goals are resolved. The efficacy of the proposed mechanism is validated through simulation of different real-world acyclic SoCPSs topologies. The results show that proposed approach is able to balance the individual requirements of multiple connected CPSs while achieving SoCPSs’ mission.