摘要:Mobility is a must for human life on this planet, because important activities like working or shopping cannot be done from home for everyone. Present modes of transports contributes significantly to green house gas emissions while the efforts to reduce these emissions can be improved in many countries. Pathways to a more sustainable form of mobility can be modelled using travel demand models to aid decision makers. However, to project human behavior into the future one should analyze the changes in the past to understand the drivers in mobility change. Mobility surveys provide sets of activity diaries, which show changes in travel behavior over time. Those activity diaries are one of the inputs in activity-based demand generation models like travel activity pattern simulation (TAPAS). This paper shows a method of using probability distributions between person and diary groups. It offers an opportunity for an increased heterogeneity in travel behavior without sacrificing too much accuracy. Additionally it will present the use case of temporal back- and forecasting of changes in activity choices of existing mobility survey data. The results show the possibilities within this approach together with its limits and pitfalls.